Information

Related Research Units

Publications

  1. Embryonic alcohol exposure in zebrafish predisposes adults to cardiomyopathy and diastolic dysfunction. Cardiovasc Res. 2024 Nov 05; 120(13):1607-1621. View Abstract
  2. Generation and application of endogenously floxed alleles for cell-specific knockout in zebrafish. Dev Cell. 2023 Nov 20; 58(22):2614-2626.e7. View Abstract
  3. RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circ Res. 2022 12 02; 131(12):980-1000. View Abstract
  4. Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome. Nat Commun. 2022 10 05; 13(1):5877. View Abstract
  5. Latent TGFß-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis Model Mech. 2022 03 01; 15(3). View Abstract
  6. Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Front Cell Dev Biol. 2022; 10:800594. View Abstract
  7. Innate Mechanisms of Heart Regeneration. Cold Spring Harb Perspect Biol. 2021 11 01; 13(11). View Abstract
  8. Deep learning enables automated volumetric assessments of cardiac function in zebrafish. Dis Model Mech. 2019 10 25; 12(10). View Abstract
  9. H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development. 2019 10 09; 146(19). View Abstract
  10. Canonical Wnt Signaling Sets the Pace. Dev Cell. 2019 09 23; 50(6):675-676. View Abstract
  11. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol. 2019 Oct; 40(7):1410-1418. View Abstract
  12. Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. Elife. 2019 06 25; 8. View Abstract
  13. Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Rep. 2019 01 15; 26(3):546-554.e5. View Abstract
  14. Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Rep. 2018 07 31; 24(5):1342-1354.e5. View Abstract
  15. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Dev Cell. 2018 02 26; 44(4):433-446.e7. View Abstract
  16. Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation. 2018 05 15; 137(20):2152-2165. View Abstract
  17. Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development. 2017 12 15; 144(24):4616-4624. View Abstract
  18. Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxf). 2017 06; 4(3):105-123. View Abstract
  19. TGF-ß Signaling Is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation. Cell Rep. 2017 07 25; 20(4):973-983. View Abstract
  20. Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio ( Devario aequipinnatus) and Zebrafish ( Danio rerio) Hearts. J Histochem Cytochem. 2016 11; 64(11):687-714. View Abstract
  21. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature. 2016 06 30; 534(7609):700-4. View Abstract
  22. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development. 2016 Jan 01; 143(1):113-22. View Abstract
  23. Chamber identity programs drive early functional partitioning of the heart. Nat Commun. 2015 Aug 26; 6:8146. View Abstract
  24. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Dev Cell. 2015 Aug 24; 34(4):387-99. View Abstract
  25. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev Cell. 2015 May 26; 33(4):442-54. View Abstract
  26. Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood. 2015 Feb 26; 125(9):1418-26. View Abstract
  27. Development. A crowning achievement for deciphering coronary origins. Science. 2014 Jul 04; 345(6192):28-9. View Abstract
  28. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci U S A. 2014 Jan 28; 111(4):1403-8. View Abstract
  29. Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nat Cell Biol. 2013 Nov; 15(11):1362-9. View Abstract
  30. Tbx1 is required for second heart field proliferation in zebrafish. Dev Dyn. 2013 May; 242(5):550-9. View Abstract
  31. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development. 2013 Mar; 140(6):1353-63. View Abstract
  32. Hematopoietic defects in rps29 mutant zebrafish depend upon p53 activation. Exp Hematol. 2012 Mar; 40(3):228-237.e5. View Abstract
  33. Latent TGF-ß binding protein 3 identifies a second heart field in zebrafish. Nature. 2011 May 29; 474(7353):645-8. View Abstract
  34. Characterization of immune-matched hematopoietic transplantation in zebrafish. Blood. 2011 Apr 21; 117(16):4234-42. View Abstract
  35. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development. 2010 Jun; 137(11):1887-96. View Abstract
  36. A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood. 2009 Jun 04; 113(23):5776-82. View Abstract
  37. A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One. 2008; 3(10):e3364. View Abstract
  38. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008 Feb 07; 2(2):183-9. View Abstract
  39. Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord. Neuron. 2007 Mar 15; 53(6):813-27. View Abstract
  40. Homing sweet homing: odyssey of hematopoietic stem cells. Immunity. 2006 Dec; 25(6):859-62. View Abstract
  41. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev. 2005 Oct 01; 19(19):2331-42. View Abstract
  42. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis. PLoS Biol. 2004 Aug; 2(8):E237. View Abstract
  43. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp Hematol. 2002 Dec; 30(12):1381-9. View Abstract
  44. Portrait of a stem cell. Dev Cell. 2002 Nov; 3(5):612-3. View Abstract

Contact Caroline Burns