Current Environment:

Researcher | Research Overview

The Kanarek Laboratory is interested in folate metabolism. It is surprising that this essential vitamin, so famous for its key role in development, hematopoiesis and cancer progression, is still a mystery when it comes to its cellular and whole-body sensing and homeostasis.

The Kanarek lab applies genetic perturbations, biochemical assays, molecular biology, functional genomic screens, and metabolite profiling by mass spectrometry in cell-culture systems and in vivo to study basic folate biology including folate metabolism, folate-related signal transduction, the oncogenic role of folate and folate homeostasis in normal physiology and pathological conditions.

Methods used in the Kanarek Lab include: metabolite profiling by mass spec, CRISPR/Cas9 functional genomic screens, CRISPR-based individual gene knockouts, in vivo tumor models, molecular biology tools and biochemistry.

Researcher | Research Background

A native of Jerusalem, Israel, Dr. Naama Kanarek trained at the Hebrew University, where she earned a BSc (2004) in medical science, an MSc in proteomics and microbiology (2008), and a PhD (2012) in immunology and cancer research with one year at Columbia University Medical Center in New York. Dr. Kanarek’s postdoctoral research (2012-2019) was performed under the supervision of Prof. David M. Sabatini at MIT’s Whitehead Institute.

In the laboratory of Prof. David M. Sabatini Naama became interested in the cancer metabolism field, and specifically, in folate metabolism. She studied the response of hematopoietic cancer cells to the anti-folate chemotherapeutic agent methotrexate using a genome-wide, loss-of-function CRISPR/Cas9-based screen. Through the screen Dr. Kanarek found that the histidine degradation pathway significantly influences the sensitivity of cancer cells to methotrexate and can be exploited to improve methotrexate efficacy through simple dietary intervention. Additionally, her findings raised the possibility that the histidine degradation pathway plays an uncharacterized key role in folate homeostasis through directing folate towards a putative storage form of folate.

Dr. Kanarek is the recipient of a number of awards and honors, including the Margaret and Herman Sokol Postdoctoral Award (2018), the Leukemia and Lymphoma Society New Idea Award (2017), the Hebrew University Women in Science Postdoctoral Award (2014), the Weizmann Institute Postdoctoral Award for Advancing Women in Science and a Revson Fellow of that program (2012), and the James Sivarsten Prize in Pediatric Cancer Research (2010). Her postdoctoral work was supported by fellowships from the American Association for Cancer Research (2016) and the European Molecular Biology Organization (2012).

As a postdoctoral fellow working mainly with pediatric cancer patients, Dr. Kanarek developed great care for these patients and deep understanding of their needs. She therefore established No Empty Bedsides (www.noemptybedsides.com), a charitable organization that helps find solutions for parents who, for personal or financial reasons, have difficulty remaining in hospital while their children undergo medical treatment.

Researcher | Publications